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Abstract—There are numerous barriers to the use of scientific computing
toolsets. These barriers are becoming more apparent as we increasingly see
mixing of different academic backgrounds, and compute ranging from laptops
to cloud platforms. Members of the UC Berkeley D-Lab, Statistical Computing
Facility (SCF), and Berkeley Research Computing (BRC) support such use-
cases, and have developed strategies that reduce the pain points that arise.
We begin by describing the variety of concrete training and research use-
cases in which our strategy might increase accessibility, productivity, reuse, and
reproducibility. We then introduce available tools for the “recipe-based” creation
of compute environments, attempting to demystify and provide a framework for
thinking about DevOps (along with explaining what “DevOps” means!). As a
counterpoint to novel DevOps tools, we’ll also examine the success of OSGeo-
Live [OSGL] – a project that has managed to obtain and manage developer
contributions for a large number of geospatial projects. This is enabled through
the use of commonly known skills like shell scripting, and is a model of
complexity that can be managed without these more recent DevOps tools. Given
our evaluation of a variety of technologies and use-cases, we present our current
strategy for constructing the Berkeley Common Environment [BCE], along with
general recommendations for building environments for your own use-cases.

Index Terms—education, reproducibility, virtualization

Introduction

Most readers of this paper will have dealt with the challenges
of sharing or using complex compute stacks – be that in
the course of instruction, collaboration, or shipping profes-
sional software. Here, we suggest an approach for introducing
novices to new software that reduces complexity by providing
a standard reference end-user environment. We’ll discuss
approaches to building and using a common environment from
any major OS, including an overview of the tools available
to make this easier. This approach can make it easier to
provide complete and robust instructions, and make it easier
for students to follow demos.

At a university, students often need to reproduce an envi-
ronment required to run the software for a course. Researchers
need to reproduce their collaborator’s workflows, or anyone’s
workflow in the name of reproducible research. Recently, a
new crop of tools-for-managing-tools has emerged under the
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DevOps banner – a contraction of software development and
systems operation – with a general philosophy that instead of
merely documenting systems operation tasks (configuration,
deployment, maintenance, etc.), that developers can and should
be scripting these tasks as much as possible.

In scientific computing the environment was commonly
managed via Makefiles & Unix-y hacks, or alternatively with
monolithic software like Matlab. More recently, centralized
package management has provided curated tools that work
well together. But as more and more essential functionality
is built out across a variety of systems and languages, the
value – and also the difficulty – of coordinating multiple
tools continues to increase. Whether we are producing research
results or web services, it is becoming increasingly essential
to set up new languages, libraries, databases, and more.

Documentation for complex software environments is stuck
between two opposing demands. To make things easier on
novice users, documentation must explain details relevant
to factors like different operating systems. Alternatively, to
save time writing and updating documentation, developers
like to abstract over such details. A DevOps approach to
“documenting” an application might consist of providing brief
descriptions of various install paths, along with scripts or
“recipes” that automate setup. This can be more enjoyable
and certainly easily and robustly reproducible for end-users
– even if your setup instructions are wrong, they will be
reproducibly wrong! As we’ll describe below, many readers
will already have tools and skills to do this, in the form of
package management and basic shell scripting. In other words,
the primary shift that’s required is not one of new tooling,
as most developers already have the basic tooling they need.
Rather, the needed shift is one of philosophy.

We recognize that excellent tools have been developed to
allow for configuring Python environments, including envi-
ronments that peacefully co-exist on the same computer (e.g.,
pip, virtualenv, venv, conda, and buildout). These specialized
tools can increase our efficiency and provide ready access
to a broader range of options (such as different versions or
compile-time settings). But, we may also wish to coordinate
the desktop environment, including text editors, version con-
trol systems, and so on. As such, these tools from the Python
community to manage packages and run-time environments
cannot solve all of our problems. But any of them could be
used within the broader approach we’ll describe.
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More recent configuration management tools are directed at
solving this larger problem of configuring nearly any aspect of
a compute system, and yet other DevOps tools provide efficient
ways of managing environments across compute contexts.
Unfortunately, the variety and complexity of tools match the
variety and complexity of the problem space, and the target
space for most of them was not scientific computing. Thus,
before discussing available tooling, we first lay out a fuller set
of concerns relevant to supporting scientific computing.

Issues for Scientific Computing

The users of computational tools (and their collaborators) are
often equipped with a suite of informally learned foundational
skills (command line usage, knowledge of specific applica-
tions, etc.). Newcomers to a field often lack these technical
skills, which creates a boundary between those who do and
do not (and perhaps cannot) participate in that discipline.
However, we are entering an era where these boundaries are
becoming barriers to the research and educational mission of
our university. Our primary concern at present for the Berke-
ley Common Environment [BCE] is educational, particularly
introductory computational science and statistics. However,
where possible, we wish to build an environment that supports
the broader set of uses we outline here.

For instruction

We are entering an era where experimental philosophers want
to take courses in advanced statistics and sociologists need
best-of-breed text analysis. These students are willing to work
hard, and might sign up for the university courses meant to
provide these skills. But while the group that the course was
originally designed for (e.g., statistics or computer science
students) have a set of assumed skills that are necessary to
succeed in the class, these skills aren’t taught anywhere in
the curriculum. In these cases, instructors may spend a large
amount of time addressing installation and setup issues –
taking time away from higher value instruction. Alternatively,
students with divergent backgrounds often drop these classes
with the sense that they simply can’t obtain these skills. This
is not an equitable situation.

It’s difficult, however, to write instructions that work for
any potential student. As mentioned above, students come to a
course with many possible environments (i.e., on their laptop
or a server). But if a standardized environment is provided,
this task becomes much simpler. Written instructions need
fewer special cases, and illustrations can be essentially pixel-
identical to what students should be seeing on their screen.

The most accessible instructions will only require skills pos-
sessed by the broadest number of people. In particular, many
potential students are not yet fluent with notions of package
management, scripting, or even the basic idea of command-
line interfaces [SWC]. Thus, installing an accessible solution
should require only GUI operations. The installed common
environment, then, can look and operate in a uniform way.
This uniformity can scaffold students’ use of more challenging
“developer” tools. This “uniformity of the environment in
which the user is clicking” cannot be implemented without full

control of the graphical environment, and systems that config-
ure only a self-contained set of libraries or computational tools
cannot do this. At the other end, it would be unreasonable to
reconfigure students’ desktop on their laptop. Thus, we wish to
set up an isolated, uniform environment in its totality where
instructions can provide essentially pixel-identical guides to
what the student will see on their own screen.

For scientific collaboration

Across campus, we encounter increasing numbers of re-
searchers who wish to borrow techniques from other re-
searchers. These researchers often come from different do-
mains with different standards for tools. These would-be
collaborators are increasingly moving towards open-source
tools – often developed in Python or R – which already
dramatically reduces financial barriers to collaboration.

The current situation, however, results in chaos, misery, and
the gnashing of teeth. It is common to encounter a researcher
with three or more Python distributions installed on their
machine, and this user will have no idea how to manage their
command-line path, or which packages are installed where.
In particularly pathological cases, pip will install packages
to an otherwise inactive python distribution. These nascent
scientific coders will have at various points had a working
system for a particular task, and often arrive at a state in
which nothing seems to work. A standard environment can
eliminate this confusion, and if needed, isolate environments
that serve different projects. Snapshots of working systems can
provide even more resilience of the continued functioning of
already running projects. And it bears repeating that we don’t
want to disrupt the already productive environments that these
researchers are using!

This issue becomes even more pronounced when researchers
attempt to reproduce published results without access to the
expert who did the initial research. It is unreasonable to
expect any researcher to develop code along with instructions
on how to run that code on any potential environment. As
with the instructional case above, an easy way to do this
is to ensure others have access to the exact environment
the original researcher was working on, and again, “pixel-
identical” instructions can be provided.

For administration

At UC Berkeley, the D-Lab supports tools for courses and
short trainings. Similarly, the Statistical Computing Facility
(SCF) supports an instructional lab and “cloud” resources
for some courses, and grad student assistants often provide
virtual machines for computer science courses (we’ll explain
virtual machines later). In each and every case, multiple
technical challenges are common. These technical glitches can
delay or reduce the quality of instruction as compared to an
environment that students are already familiar with. It is also
a drag on the time of those supporting the course – time that
could be better directed at course content!

The more broadly a standard environment is adopted across
campus, the more familiar it will be to all students. Using in-
frastructure for collaborative administration, technical glitches
can be tracked or resolved by a community of competent
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contributors, allowing course instructors to simply use a well-
polished end product, while reducing the complexity of in-
structions for students to set up course-specific software. These
environments can also be tuned in ways that would be beyond
the scope of what’s worth doing for an individual course – for
example optimizations to increase the efficiency of numeric
computations or network bandwidth for remote desktops.

At this point that our use case starts to sound like the case
in which product developers are working together to deploy
software on a production server, while maintaining a useful de-
velopment environment on their own machines, testing servers,
and so on. However, going forwards, we will suggest that
novel tools for building and managing compute environments
be largely the domain of specialized administrator-contributors
to a common environment. Technically skilled students, pro-
fessors and researchers can continue to use the tools they are
familiar with, such as the Ubuntu package manager, pip, shell
scripts, and so on.

Technical challenges for a common environment

Any common environment needs to provide a base of generally
useful software, and it should be clear how it was installed and
configured. It should be equally clear how one could set up
additional software following the pattern of the “recipe” for the
environment, making it easy to share new software with other
users of the environment. More generally, we seek to address
the following challenges, though we have not definitely solved
them! After each problem, we list relevant tools, which will
be described in full in a later section.

Complex requirements

The quote at the beginning of this paper illustrates a case
in which requirements are not explicitly stated and there is
an assumption that all collaborators know how to set up
the necessary environment. The number of steps or the time
required is unknown, and regularly exceeds the time available.
For example, in the context of a 1.5 hour workshop or a
class with only handful of participants, if all cannot be set up
within a fixed amount of time (typically 20 minutes at most) it
will jeopardize successfully completing the workshop or class
materials and will discourage participation. All participants
must be able to successfully complete the installation with a
fixed number of well-known steps across all platforms within
a fixed amount of time.

Additional difficulties arises when users are using different
versions of the “same” software. For example, Git Bash on
Windows lacks a man command. We can’t control the base
environment that users will have on their laptop or workstation,
nor do we wish to! A useful environment should provide
consistency and not depend on or interfere with users’ existing
setup. Relevant tools discussed below include Linux, virtual
machines, and configuration management.

Going beyond the laptop

Laptops are widely used across the research and teaching
space and in our experience it is reasonable to assume most
individuals will have at least a 64-bit laptop with 4GB of

Goal Relevant tools
Make Linux available as a
VM (regardless of host OS)

Local VM tool or public cloud (e.g.,
VirtualBox or Amazon EC2 – choose
something supported by Packer)

Apply configurations in a re-
peatable fashion

Scripting, package managers (e.g., apt,
pip), configuration management (e.g.,
Ansible)

Generate OS image for mul-
tiple platforms

Packer

Enable light-weight custom
environment (instead of
heavy-weight virtualization)

Docker, LXC

TABLE 1: Recommended automation tools for our use-cases.

RAM. Such a laptop is sufficient for many tasks, however
the algorithms or size of in-memory data may exceed the
available memory of this unit-of-compute and the participant
may need to migrate to another compute resource such as a
powerful workstation with 128GB of RAM (even the most
advanced laptops typically max-out at 16GB at the time of
this writing). Thus, an environment should not be restricted to
personal computers. Across systems, a user should be able to
to replicate the data processing, transformations, and analysis
steps they ran on their laptop in this new environment, but with
better performance. Relevant tools discussed below include
Packer and Docker.

Managing cost / maximizing value

Imagine you have the grant money to buy a large workstation
with lots of memory and many processors, but you may only
need that resource for a 1 to 2 week period of time. Spending
your money on a resource that remains unused 95% of the
time is a waste of your grant money! A homogeneous, familiar
environment can enable easier usage of the public cloud. A
private cloud approach to managing owned resources can also
allow more researchers to get value out of those resources.
This is a critical enabler to allow us to serve less well-funded
researchers. In addition, more recent technologies can avoid
exclusively reserving system resources for a single environ-
ment. Relevant tools discussed below are Packer, Docker (and
LXC), and cloud-based virtual machines.

Existing Tools

As discussed above, the problems outlined above are not
unique to scientific computing. Developers and administrators
have produced a variety of tools that make it easier to ensure
consistent environments across all kinds of infrastructure,
ranging from a slice of your personal laptop, to a dynamically
provisioned slice of your hybrid public/private cloud. We
cannot cover the breadth of tooling available here, and so we
will restrict ourselves to focusing on those tools that we’ve
found useful to automate the steps that come before you start
doing science. We’ll also discuss popular tools we’ve found
to add more complexity for our use-cases than they eliminate.
Table 1 provides an overview from the perspective of the
DevOps engineer (i.e., contributor, maintainer, you, etc.).
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Linux OS (Operating System)

A foundational tool for our approach is the Linux operating
system. It is far easier to standardize on a single OS instead of
trying to manage cross-platform support. It is relatively easy
to install (or build) scientific code and DevOps tools on Linux.
Moreover, Linux is not encumbered by licensing constraints,
which reduces barriers to collaboration, distribution, and reuse.
This choice of a single target OS is a primary reason to use
virtual machines (described below) because most people don’t
use Linux as their primary laptop OS.

Virtual machines (VMs)

Virtual machine (VM) software enables running another OS
(in BCE, Ubuntu server with XFCE installed) as a guest OS
inside the host OS – often Mac OS or Windows. If a system
is not virtualized (for example, the host OS), it is said to
be running on “bare metal.” For BCE, we have focused on
VirtualBox and VMware (the former of which is free) as they
both run on Windows, Mac OS, and Linux. Cloud providers
like EC2 only provide virtual machines (there is no access
to “bare metal”), and similar concepts apply across local and
cloud virtual systems. A notable distinction is that web tools
are often available for cloud services, as opposed to a local
GUI tool for systems like VirtualBox. Both kinds of services
provide command-line tools that can perform a superset of the
tasks possible with graphical interfaces.

For some users, a VM simply will not run locally, generally
because they have a very old operating system or computer.
Thus, one should assume that any VM solution will not work
for some individuals and provide a fallback solution (partic-
ularly for instructional environments) on a remote server. In
this case, remote desktop software may be necessary, or in the
case of BCE, we are able to enable all essential functionality
via a web browser using IPython notebooks. RStudio server
would provide a similar approach to sidestepping the need for
a full remote desktop session.

One concern is that VMs reserve compute resources ex-
clusively. Some approaches, however, allow for more elastic
usage of resources, most notably with LXC-like solutions,
discussed in the Docker section below. Another issue that can
arise is dealing with mappings between host and guest OS,
which vary from system to system – arguing for the utility
of an abstraction layer for VM configuration like Vagrant
or Packer (discussed below). This includes things like port-
mapping, shared files, enabling control of the display for
a GUI vs. enabling network routing for remote operation.
These settings may also interact with the way the guest OS
is configured. Specifically with BCE we noticed that some
desktop environments interacted poorly with VirtualBox (for
example, LXDE did not handle resize events properly).

Note that if you are already running Linux on “bare metal”,
it’s still useful to run a virtualized Linux guest OS. The BCE
model relies on a well-known, curated set of dependencies
and default configurations. To ensure that it is possible to
consistently and reliably manage those elements no matter
what flavor, variant, or version of Linux you may be running as
the host OS. However, we have intentionally made choices that
allow an informed developer set up a partial environment that

matches BCE. For example, python requirements are installed
with pip using a requirements file. This makes it easy to set
up a virtualenv or conda environment with those packages.

The easiest way to use a VM is to use a pre-existing image
– a file that contains all relevant data and metadata about an
environment (described more fully at [images]). It’s very easy
to make modifications to an environment and make a new
image by taking a snapshot. Note that while both local and
cloud-based VM systems often allow for easy snapshotting,
it may be hard to capture exactly how changes happened
– especially changes and configuration that was made “by
hand.” So, snapshots are not necessarily a good solution for
reproducibility. You can also install an OS to a virtual image in
essentially the same manner you would install it to bare metal.
The primary difference is that you need to use specialized VM
software to start this process. For example, you can do this
directly in VirtualBox simply by clicking the “New” button,
and you’ll be guided through all of the steps. There are more
automated ways, however, and we discuss these below.

Configuration management and automated image creation

Creating an image or environment is often called provisioning.
The way this was done in traditional systems operation was
interactively, perhaps using a hybrid of GUI, networked, and
command-line tools. The DevOps philosophy encourages that
we accomplish as much as possible with scripts (ideally
checked into version control!). Most readers of this paper will
already be able to create a list of shell commands in a file and
execute it as a script. So, if you already know how to execute
commands at the Bash prompt to configure Linux, this can do
most of the system setup for you.

Package managers in particular provide high-level com-
mands to install and configure packages. Currently, we use
a combination of apt, pip, and shell scripts. We also evaluated
conda and found that it introduced additional complexity. For
example, it is still hard to install a list of pip requirements
with conda if some packages are not available for conda.
Most package authors currently make their packages available,
however, for pip. Standard apt packages were also adequate for
things like databases, and ideal for the desktop environment,
where we could reap the benefit of the careful work that went
into the LTS Ubuntu distribution.

Some steps may even be done manually. As we explored
managing the complexity and reducing the number of tools
for the BCE development process, one of the steps in the
“recipe” was manual installation of Ubuntu from an ISO. It
is straightforward to make a binary image from a snapshot
immediately after creating a base image, so this initial step
could be done once by a careful individual.

Ultimately, however, we decided it was better to automate
installation from an ISO, which is enabled by the Debian
Installer [UDI], a system that allows a text file to specify
answers to the standard configuration prompts at install-time,
in addition to providing many more possibilities. You can
find the BCE configuration file for the debian-installer in the
provisioning/http directory. Later, we’ll discuss how
we’re coordinating all of the above using Packer.
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Ansible and related tools

Ansible is one of a number of recent DevOps tools for config-
uration management [Ansible]. These tools enable automated
management of customizations to the default status and con-
figuration of software. They are purpose-built domain-specific
tools that can replace the scripting approach described above.
Such systems provide checks and guarantees for applying
changes that would be hard to write as shell scripts alone
– just as a makefile handles builds more gracefully than a
shell script. This approach manages configuration complexity
as an environment grows in feature complexity. It may also
allow an end-user to manage and reliably apply personal
customizations across multiple versions of an environment
over time. For BCE development, we felt Ansible added the
least complexity amongst comparable tools. It may be used
at build-time and also at run-time within the guest OS, or
from any other location with SSH access to the target being
configured. The only requirements for the target are an SSH
server and a Python interpreter (Ansible is Python-based).
Ansible execution is also more linear than some systems,
which is a limitation, but also a simplification.

At this phase, however, the complexity of BCE doesn’t
warrant contributors learning even a simple configuration
management tool. The maintainer of the Software Carpentry
VM, Matt Davis, has reported a similar observation. He has
used another tool, Puppet, to provision the Software Carpentry
VM, but will likely use shell scripts in the future. And as we
will see below from the OSGeo project, it is perhaps easier to
coordinate certain kinds of complexity with more commonly
known tools like shell scripting.

While the syntax for each tool varies, the general concept
is the same – one describes the desired machine state with
a tool-specific language. After execution of this recipe – if
you did a good job – the machine state is guaranteed to
be how you’ve requested it to be. Unfortunately, all DevOps
tools call their recipes something different. While the process
certainly seems more like baking than, say, coaching a football
team, Ansible calls its scripts “playbooks.” Alternate tools
with similar functionality are Chef (which, unsurprisingly does
call its scripts “recipes”), Salt (also Python-based, and uses
“states”), and Puppet (which uses “manifests”). With any of
these, a great way to start learning would be to translate an
existing configuration shell script into one of these tools.

Packer

Packer is used at build-time and enables creating identical
machine images targeting multiple machine image formats
[Packer]. For example, we generate a (mostly) uniformly
configured BCE machine image in multiple formats including
OVF for VirtualBox and AMI for AWS EC2. Packer coordi-
nates many of the tools described above and below based on a
JSON configuration file. This file specifies the Ubuntu ISO to
install, a Debian Installer configuration file (which gets served
over HTTP), and configures the installed OS by copying files
and running a shell script. Packer can also readily use Ansible,
Puppet, Chef, or Salt (and has a plugin system if you want
to use something more exotic). Images can be built for many

popular platforms, including a variety of local and cloud-based
providers.

Packer made it possible for us to learn a relatively simple
tool that executes the entire image-creation process as a
single logical operation. Moreover, end users need have no
knowledge of Packer. They can use the Amazon web console
or the VirtualBox GUI with no concerns for the complexity at
build time.

It is worth noting that while indexes are available for a
variety of images (e.g, vagrantbox.es, the Docker index, and
Amazon’s list of AMIs), we have encountered surprisingly
little effort to publish consistent environment that allows one to
readily migrate between platforms. This is, however, precisely
the goal of BCE, and it’s enabled by Packer.

Vagrant

Vagrant is a run-time component that needs to be installed on
the host OS of the end user’s laptop [Vagrant]. Like Packer,
it is a wrapper around virtualization software that automates
the process of configuring and starting a VM from a special
Vagrant box image (Vagrant boxes may be created with any of
the above tools). It is an alternative to configuring the virtual-
ization software using the GUI interface or the system-specific
command line tools provided by systems like VirtualBox or
Amazon. Instead, Vagrant looks for a Vagrantfile which defines
the configuration, and also establishes the directory under
which the vagrant command will connect to the relevant
VM. This directory is, by default, synced to the guest VM,
allowing the developer to edit the files with tools on their
host OS. From the command-line (under this directory), the
user can start, stop, or ssh into the Vagrant-managed VM. It
should be noted that (again, like Packer) Vagrant does no work
directly, but rather calls out to those other platform-specific
command-line tools.

The initial impetus for the BCE project came from a
Vagrant-based project called “jiffylab” [jl]. With a single com-
mand, this project launches a VM in VirtualBox or on various
cloud services. This VM provides isolated shell and IPython
notebook through your web browser. But while Vagrant is
conceptually very elegant (and cool), we are not currently
using it for BCE. In our evaluation, it introduced another piece
of software, requiring command-line usage before students
were comfortable with it. Should a use-case arise, however,
it would be trivial to create a “vagrant box” (a Vagrant-tuned
virtual image) with our current approach using Packer. That
said, other “data-science” oriented VMs have chosen Vagrant
as their method of distribution [DSTb], [DSTk]. Currently,
Vagrant is most useful for experienced developers to share
environments with each other.

Docker

Docker is a platform to build, distribute, and run images
built on top of Linux Containers (LXC) which provides
a lightweight style of virtualization called containerization
[Docker]. An important distinction of LXC-based container-
ization is that the guest OS and the host OS both run the same
underlying Linux kernel.
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At run-time Docker adds to this containerization a collection
of tools to manage configuring and starting an instance in
much the same way that Vagrant does for a virtualization
environment. Images are created using a simple build script
called a Dockerfile which usually runs a series of shell
script commands which might even invoke a configuration
management system such as Ansible.

Another feature of the platform is the management and dis-
tribution of the images built by docker, including incremental
differences between images. Docker makes it possible (albeit
in a rudimentary way) to track changes to the binary image in
a manner similar to the way git allows you to track changes
to source code. This also includes the ability to efficiently
maintain and distribute multiple branches of binary images
that may be derived from a common root.

Docker is also more than just a tool. It is a quickly
growing community of open source and industry developers
with a rapidly evolving ecosystem of tools built on core OS
primitives. There is no clear set of best practices, and those that
emerge are not likely to fit all the use cases of the academic
community without us being involved in mapping the tools
to our needs. However, providing better access to hardware
with containers is an important and active research topic for
performance [HPC].

Currently, Docker requires a Linux environment to host the
Docker server. As such, it clearly adds additional complexity
on top of the requirement to support a virtual machine. We
also evaluated Docker as a way to potentially provide around
30 students access to a VM on a reasonably powered server
with only 16GB of RAM. However, in our use-cases, we
have full control of our Linux compute environment and
existing methods of isolating users with permissions was less
complex than using Docker, and of course allowed users to
efficiently share all available physical RAM. Moreover, the
default method of deploying Docker (at the time of evaluation)
on personal computers was with Vagrant. This approach would
then also add the complexity of using Vagrant. However,
recent advances with boot2docker provide something akin to a
VirtualBox-only, Docker-specific replacement for Vagrant that
eliminates some of this complexity, though one still needs to
grapple with the cognitive load of nested virtual environments
and tooling.

OSGeo-Live: A Successful Common Environment

The OSGeo-Live VM is an example of a comprehensive
geospatial compute environment with a vibrant community
process. It provides a successful example of solving the
problems of complex requirements described above – or in
this case, perhaps more properly called “dependency hell”.
Notably, the project uses none of the recent DevOps tools.
OSGeo-Live is instead configured using simple and modular
combinations of Python, Perl and shell scripts, along with clear
install conventions and examples. Documentation is given high
priority.

The VM project began around the same time as, and
ultimately joined the Open Source Geospatial Foundation
(OSGeo), an international body modeled on the Apache

Foundation [2g]. It started as a smaller open project that
sought to build an “easy to try and use” software environ-
ment for spatial data applications. Initial efforts consisted
of shell scripts to install core geospatial packages. These
examples provided guides to the projects that were invited
and ultimately contributed packages to the project. Many of
these later contributors spoke English as a second language,
further highlighting the importance of clear, working code
examples. OSGeo-Live is not the only attempt at building
such an environment, but it is a highly successful one. More
than fifty open-source projects now contribute by actively
maintaining and improving their own install scripts, examples
and documentation.

Tool Sets

OSGeo-Live itself is not a “Linux distribution” per se, rather
it relies on an apt-based ecosystem to handle the heavy-lifting
of system updates and upgrades. This is a win, as updates are
proven reliable over a very large Ubuntu community process,
and project participants can concentrate on adding value to its
featured components. Given the component architecture used
to build the VM, individual software projects can be installed
as-needed on a generic apt-enabled base.

A key component of the success of the overall project
has been the availability of widely-known and reliable tools.
Rather than require .deb installation packages for each
project, OSGeo-Live chose to use a simple install script
format, with ample examples. This choice proved crucial in
the earliest stages, as an outside open-source project evaluating
participation in the Live ISO could get started with fewer
barriers to entry. Participating open-source projects already
had install scripts built for Linux, so they could almost
immediately adapt and iterate their own install scripts in a
straightforward way, with the flexibility to use the tools they
were already using, such as shell, Perl, or Python. Scripts may
call package managers, and generally have few constraints
(apart from conventions like keeping recipes contained to
a particular directory). The project also maintains packages
that support broader kinds of packages, such as web-based
applications. In this case, OSGeo-Live provides a standard
configuration for Apache, WSGI, and other components, along
with a standard layout for projects that rely on this core. As a
result, there is very little conflict among packages that share
common resources. Some concerns, like port number usage,
have to be explicitly managed at a global level. But the over-
head of getting 50 projects to adopt a uniform configuration
management tool would likely be much greater.

All recipes are currently maintained in a common subver-
sion repository, using standardized asset hierarchies, including
installation scripts [6g]. An OSGeo-Live specific report is
maintained on the project trac ticketing system [10g]. And
while OSGeo-Live primarily targets a live/bootable ISO, the
scripts that are used to build that ISO provide a straightforward
method for building OSGeo software in other contexts.

Community Awareness

The initial stages of the adoption of new technology include
initial awareness and trialability [4g]. OSGeo-Live intention-
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ally incorporates targeted outreach, professional graphic de-
sign and “easy to try” structure to build participation from
both developers and end-users. An original project design
goal was to provide tools to those doing geospatial fieldwork
with limited resources around the globe, and who often lack
advanced programming and administration skills. In other
words, a community was built around tools that the desired
members already had.

Several years into the project, with a grant from the Aus-
tralian government, a professional-level documentation project
was initiated for a single-page overview and quick-start in-
structions for each application. Language internationalization
was rendered more efficient, specifically to support local field
work. Much later, a “percentage complete” graph for each
human language group was added, making translation into a
sort of competitive game. This translation has proven very
successful. The project has facilitated collaboration across
developer communities. For example, we have seen productive
application of software developed by the U.S. military to
environmental applications [Army].

Steps to Contribute

All build scripts are organized in the open, in source control
[6g]. A new contributors FAQ is maintained via wiki [7g]
for software projects, and for translation [8g]. At its core,
the OSGeo-Live project uses common skills for system ad-
ministration as opposed to more recent DevOps available, but
it very much adopts a DevOps philosophy. Contributors pay
particular attention to documenting each and every step, and
standard approaches are encouraged across the project. Gam-
ification also played a role in spurring useful documentation
contributions. The low barrier to entry (allowing contributing
projects to use skills they likely already have), combined with
guidelines to ensure interoperability have led to OSGeo-Live
becoming a standard way to evaluate and install software in
the geospatial community.

BCE: The Berkeley Common Environment

The overarching, aspirational goal for the Berkeley Common
Environment (BCE) is to make it easy to do the “right” thing
(or hard to do “wrong” things), where “right” means you’ve
managed to use someone else’s code in the manner that was
intended. In particular, it allows for targeted instructions that
can assume all features of BCE are present. BCE also aims
to be stable, reliable, and reduce complexity more than it
increases it.

More prosaically, to be useful in the cases described above,
BCE provides simple things like a standard GUI text editor,
and a command-line editor for when a GUI is not available.
BCE pre-configures applications with sensible defaults (e.g.,
spaces for tab-stops are set up for nano). It also enables
idiosyncratic features on different VM platforms, for exam-
ple, enabling simple access to shared folders in VirtualBox
and ensuring NFS functions properly on Amazon EC2. The
environment is also configured to make minimal demands
on underlying resources. For example, the BCE desktop is a
solid color to minimize network utilization for remote desktop
sessions, and efficient numerics libraries are configured.

Fig. 1: The Berkeley Common Environment running in VirtualBox on
OS X. The interface (and opportunities for confusion) are minimized.
For example, all users have the same text editor available, and in
particular, it’s easy to configure common gotchas like spaces for tabs.

BCE provides ready-made images for end-users, and the
“recipe” for setting up the image using Packer is maintained
on GitHub. Lists of Python packages are maintained in a
separate requirements file, and all setup is done via a master
Bash script. It is currently common for individuals to only
distribute scripts, which requires all potential users to install
and configure the relevant stack of DevOps tools. There are,
however, free services for distributing images for particular
tools (e.g., the Docker index), and services like Amazon can
host AMIs for pennies a month. (For example, building on
a free, existing EBS-backed AMI, one need only save a
snapshot, with charges only for changes from the base AMI.
One GB of extra tools onto a standard EBS-backed Ubuntu
server AMI, currently costs <$0.1 / GB-month to store.) We
strongly recommend distributing a binary along with the recipe
for any environment that includes novices in its audience.

Using the BCE

You can see what BCE currently looks like (in a relatively
small window) in Figure 1. Throughout various iterations,
students have found working on a BCE VM to be confusing
and counterproductive to being incredibly useful and efficient
– strong evidence that the details matter. It seems critical both
to provide a rationale for the use of VMs (i.e., explaining how
a standard, “pixel-identical” environment speeds instruction),
and also a smooth initial experience. Thus, we’ve worked
to make BCE easy for students, researchers, and instructors.
Simple instructions are provided on our site for things like
opening a terminal (including a description of what the termi-
nal icon looks like). However, for an experienced programmer,
the environment should be obvious to navigate.

In our experience, some students will not be able to run the
VM while others have difficulty getting regular access to a
stable network connection (though fortunately, almost never
both!). So, consistency across server and local versions of
the environment is critical to effectively support students with
either of these difficulties.
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If you’re using VirtualBox, we require a 64-bit CPU
with support for 64-bit virtualization (note that some 32-bit
operating systems will support this on some hardware). A
reasonable minimum of RAM is 4GB. The full instructions
for importing BCE from an OVA image into Virtualbox are
available on our project website [BCEVB]. After starting the
VM – a process that can be done entirely with the mouse
– a user will have all the software installed as part of BCE,
including IPython, RStudio, and useful packages.

If you’re using BCE on EC2, even a micro instance is
sufficient for basic tasks. Again, complete instructions are
provided on the BCE website [BCEAMI]. In brief, you can
find our image (AMI) in the public list. You can readily launch
in instance, and get instructions on connecting via the EC2
console.

Communicating with the maintainers of the BCE project

All development occurs in the open in our GitHub repository.
This repository currently also hosts the project website, with
links to all BCE materials. We provide channels for communi-
cation on bugs, desired features, and the like via the repository
and a mailing list (also linked from the project page), or if a
user is comfortable with it, via the GitHub issue tracker. BCE
will be clearly versioned for each semester, and versions will
not be modified, except for potential bugfix releases.

Contributing to the BCE project

BCE provides a fully scripted (thus, reproducible) workflow
that creates the standard VM/image. If the appropriate software
is installed, the recipe should run reliably. However, you
should generally not need to build the binary VM for BCE
for a given semester. If you wish to customize or extend
BCE, the best way to do this is by simply writing a shell
script that will install requirements properly in the context of
BCE (for a complex example, see our bootstrap-bce.sh
script [boot]). Much as with OSGeo-Live, we have chosen our
approach to provisioning to be relatively simple for users to
understand. It is our goal for instructors or domain experts to
be able to easily extend the recipe for building BCE VMs or
images. If not, that’s a bug!

As described above, while we have experimented with
Docker, Vagrant, and Ansible for setting up the various BCE
images (and evaluated even more tools), the only founda-
tionally useful tool for our current set of problems has been
Packer. Packer runs a shell script that uses standard installation
mechanisms like pip and apt-get to complete the setup
of our environment. Of central importance, Packer does not
require end-users to install or understand any of the current
crop of DevOps tools – it operates solely at build time.
However, should the need arise, Packer will readily target
Vagrant, Docker, and many other targets, and we are not
opposed to adopting other tooling.

Conclusion

By merely using recent DevOps tools, you arrive at the
cutting edge of DevOps for the scientific community. Your
collaborators and students likely won’t have needed concepts,

so extra care should be taken to make your tooling accessible.
Where appropriate, use tools that your collaborators already
know – shell, scripting, package management, etc. That said,
technologies that allow efficient usage of available hardware,
like Docker, stand to provide substantial savings and potential
for re-use by researchers with less direct access to capital.

So, let’s be intentional about creating and using environ-
ments that are broadly accessible. Let’s follow the DevOps
philosophy of being transparent and explicit about our choices
and assumptions. That doesn’t have to mean “using the latest
tools” – a simple text file or even a PDF can provide ample
explanation that a human can understand, along with a simple
reference script (in shell or Python). In this paper, we’ve made
fairly strong recommendations based on what we are actually
using (we are eating our own dogfood!). A novice user can
access BCE using only a few GUI operations on their laptop,
or the Amazon Web Console. As we’ve seen with OSGeo-
Live, the simple tools we’ve chosen make it easy for our
collaborators (instructors or researchers) to understand. This
standard reference allows us to return focus on the interesting
bits of developing code and doing science.

BCE currently provides a standard reference, built with an
easily understood recipe, that eliminates the complexity of
describing how to run a large variety of projects across a
wide variety of platforms. We can now target our instruction
to a single platform. The environment is easy to deploy, and
should provide identical results across any base platform – if
this is not the case, it’s a bug! This environment is already
available on VirtualBox and Amazon EC2, and is straightfor-
ward to provision for other environments. We welcome loose
collaboration in the form of forks that are specialized for
other institutions, and eventually, perhaps standardizing across
institutions.
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